Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 143(Pt A): 241-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26519830

RESUMO

As a consequence of climate change, increased precipitation in winter and longer periods of decreased precipitation in summer are expected to cause more frequent episodes of very high or very low river discharge in the Netherlands. To study the impact of such extreme river discharge conditions on water quality, toxicity profiles and pollutant profiles were determined of suspended particulate matter (SPM) collected from Rivers Meuse and Rhine. Archived (1993-2003) and fresh (2009-2011) SPM samples were selected from the Dutch annual monitoring program of the national water bodies (MWTL), representing episodes with river discharge conditions ranging from very low to regular to very high. SPM extracts were tested in a battery of in vitro bioassays for their potency to interact with the androgen receptor (AR), the estrogen receptor (ER), the arylhydrocarbon receptor (AhR), and the thyroid hormone transporter protein transthyretin (TTR). SPM extracts were further tested for their mutagenic potency (Ames assay) and their potency to inhibit bacterial respiration (Vibrio fischeri bioluminescence assay). Target-analyzed pollutant concentrations of the SPM samples and additional sample information were retrieved from a public database of MWTL results. In vitro toxicity profiles and pollutant profiles were analyzed in relation to discharge conditions and in relation to each other using correlation analysis and multivariate statistics. Compared to regular discharge conditions, composition of SPM during very high River Meuse and Rhine discharges shifted to more coarse, sandy, organic carbon (OC) poor particles. On the contrary, very low discharge led to a shift to more fine, OC rich material, probably dominated by algae. This shift was most evident in River Meuse, which is characterized by almost stagnant water conditions during episodes of drought. During such episodes, SPM extracts from River Meuse demonstrated increased potencies to inhibit bacterial respiration and to compete with thyroid hormone to bind to TTR, possibly due to the presence of fycotoxins. Meanwhile concentrations of polychlorobiphenyls (PCBs) in SPM were also increased. Very high River Meuse discharges on the other hand corresponded to increased androgenic and AhR agoniztic responses, which coincided with increased PAH levels and PAH-related in vivo risk estimates (i.e. multi-substance potentially affected fraction of species; msPAF). In River Rhine, very high discharges also corresponded to increasing androgenic potencies in SPM. Concentrations and corresponding msPAF values of PAHs (and metals), however, decreased with very high discharges in River Rhine in contrast to River Meuse. Mutagenicity was observed for SPM extracts from River Rhine collected during all discharge conditions, except during regular discharge. Aggregated toxicity index values, which were useful to identify toxicity profiles deviating from the generally observed pattern, did not correlate with river discharges, probably due to opposite effects of discharge conditions on different bioassay responses. In conclusion, SPM quality and related in vivo risk estimates changed during very low or very high discharge conditions but the changes were specific for the different toxic endpoints and pollutants in the different rivers. Moreover, bioassay responses to a series of consecutively collected samples from River Rhine during the Christmas flood of 1993 indicated that SPM quality is variable within a single episode of extreme discharge.


Assuntos
Mudança Climática , Material Particulado/análise , Rios/química , Movimentos da Água , Poluentes Químicos da Água/análise , Qualidade da Água , Aliivibrio fischeri/efeitos dos fármacos , Países Baixos , Material Particulado/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 49(11): 6791-9, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25978295

RESUMO

Nowadays, passive sampling is a widely applied technique to determine freely dissolved aqueous concentrations of hydrophobic organic chemicals (HOCs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Crucial to the measurements are sampler-water partition coefficients, which are generally determined in the laboratory under "standard conditions" (in freshwater at 20 °C). Theoretically, however, the coefficients are dependent on environmental conditions, such as temperature and salinity. Yet, there are insufficient experimental data in the scientific literature to prove this for different polymers. Several polymers are already being applied during field monitoring, however, and neglecting any effects may lead to imprecise results. In the present study, we therefore quantified the effects of temperature and salinity on the sampler-water partition coefficients of PAHs and PCBs for silicone rubber, a material used in Dutch passive sampling monitoring campaigns. The results demonstrated a chemical-specific and hydrophobicity-dependent temperature effect, being independent of salinity, and a chemical- and temperature-independent salinity effect. Based on the obtained data, location-specific silicone rubber-water partition coefficients (Ksr-w; adjusted for temperature and salinity) can be calculated. The impact of applying such location-specific values was demonstrated using the Dutch passive sampling field monitoring database, covering ten years of PAH and PCB data for several locations. Adjusting the Ksr-w values resulted in aqueous concentrations that were lowered by a factor of 1.6 on average. The reduction was rather constant because of the manner of sampling (under nonequilibrium conditions and using performance reference compounds) and calculating. When sampling under equilibrium conditions in seawater at temperatures at about freezing, and/or applying different calculation approaches, the adjustment effect can potentially increase up to a factor of about 5-6 for the more hydrophobic PAHs and PCBs. Although this study exclusively focused on silicone rubber, qualitatively the results will also apply to other passive sampling materials.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/análise , Salinidade , Elastômeros de Silicone/análise , Temperatura , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Padrões de Referência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...